Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Swaminathan, V. and Dharmalingam, K.M. (2011) Degree Equitable Domination on Graphs. Kragujevak Journal of Mathematics, 35, 191-197.
has been cited by the following article:
TITLE: On the Injective Equitable Domination of Graphs
AUTHORS: Ahmad N. Alkenani, Hanaa Alashwali, Najat Muthana
KEYWORDS: Domination, Injective Equitable Domination, Injective Equitable Domination Number
JOURNAL NAME: Applied Mathematics, Vol.7 No.17, November 17, 2016
ABSTRACT: A dominating set D in a graph G is called an injective equitable dominating set (Inj-equitable dominating set) if for every , there exists such that u is adjacent to v and . The minimum cardinality of such a dominating set is denoted by and is called the Inj-equitable domination number of G. In this paper, we introduce the injective equitable domination of a graph and study its relation with other domination parameters. The minimal injective equitable dominating set, the injective equitable independence number , and the injective equitable domatic number are defined.
Related Articles:
The Middle Equitable Dominating Graphs
Anwar Alwardi, N.D. Soner, Ahmad N. Al-Kenani
DOI: 10.4236/ojdm.2012.23017 3,534 Downloads 7,267 Views Citations
Pub. Date: July 18, 2012
On the Uphill Domination Polynomial of Graphs
Thekra Alsalomy, Anwar Saleh, Najat Muthana, Wafa Al Shammakh
DOI: 10.4236/jamp.2020.86088 139 Downloads 337 Views Citations
Pub. Date: June 23, 2020
The Equitable Total Chromatic Number of Some Join graphs
Gang MA, Ming MA
DOI: 10.4236/ojapps.2012.24B023 2,008 Downloads 3,507 Views Citations
Pub. Date: January 15, 2013
Graphs and Degree Equitability
Ahmad N. Al-Kenani, Nandappa D. Soner, Anwar Alwardi
DOI: 10.4236/am.2013.48160 2,767 Downloads 4,166 Views Citations
Pub. Date: August 5, 2013
Total Domination number of Generalized Petersen Graphs
Jianxiang CAO, Weiguo LIN, Minyong SHI
DOI: 10.4236/iim.2009.11003 4,813 Downloads 9,384 Views Citations
Pub. Date: July 31, 2009