Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Haynes, T.W., Hedetniemi, S.T. and Slater, P.J. (1998) Fundamentals of Domination in Graphs. Marcel Dekker, New York.
has been cited by the following article:
TITLE: On the Injective Equitable Domination of Graphs
AUTHORS: Ahmad N. Alkenani, Hanaa Alashwali, Najat Muthana
KEYWORDS: Domination, Injective Equitable Domination, Injective Equitable Domination Number
JOURNAL NAME: Applied Mathematics, Vol.7 No.17, November 17, 2016
ABSTRACT: A dominating set D in a graph G is called an injective equitable dominating set (Inj-equitable dominating set) if for every , there exists such that u is adjacent to v and . The minimum cardinality of such a dominating set is denoted by and is called the Inj-equitable domination number of G. In this paper, we introduce the injective equitable domination of a graph and study its relation with other domination parameters. The minimal injective equitable dominating set, the injective equitable independence number , and the injective equitable domatic number are defined.
Related Articles:
On the Injective Equitable Domination of Graphs
Ahmad N. Alkenani, Hanaa Alashwali, Najat Muthana
DOI: 10.4236/am.2016.717169 5,218 Downloads 5,825 Views Citations
Pub. Date: November 17, 2016
On the Uphill Domination Polynomial of Graphs
Thekra Alsalomy, Anwar Saleh, Najat Muthana, Wafa Al Shammakh
DOI: 10.4236/jamp.2020.86088 139 Downloads 342 Views Citations
Pub. Date: June 23, 2020
Total Domination number of Generalized Petersen Graphs
Jianxiang CAO, Weiguo LIN, Minyong SHI
DOI: 10.4236/iim.2009.11003 4,813 Downloads 9,386 Views Citations
Pub. Date: July 31, 2009
Bounds for Domination Parameters in Cayley Graphs on Dihedral Group
T. Tamizh Chelvam, G. Kalaimurugan
DOI: 10.4236/ojdm.2012.21002 4,322 Downloads 10,030 Views Citations
Pub. Date: January 20, 2012
Reverse Total Signed Vertex Domination in Graphs
Wensheng Li
DOI: 10.4236/ojdm.2013.31011 3,712 Downloads 5,700 Views Citations
Pub. Date: January 29, 2013