Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Blows, T.R. and Lloyd, N.G. (1984) The Number of Limit Cycles of Certain Polynomial Differential Equations. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 98, 215-239. http://dx.doi.org/10.1017/S030821050001341X
has been cited by the following article:
TITLE: Co-Existence of Local Limit Cycles from Degenerate and Weak Foci in Cubic Systems
AUTHORS: Nick Schoonover, Terence Blows
KEYWORDS: Planar Differential Equations, Local Limit Cycles, Degenerate Foci
JOURNAL NAME: Applied Mathematics, Vol.7 No.16, October 18, 2016
ABSTRACT: In this paper, we investigate the existence of local limit cycles obtained by perturbing degenerate and weak foci of two-dimensional cubic systems of differential equations. In particular, we consider a specific class of such systems where the origin is a degenerate focus. By utilizing a Liapunov function method and the stability results that follow, we first determine constraints on the system to maximize the number of local limit cycles that can be obtained by perturbing the degenerate focus at the origin. Once this is established, we add on the additional assumption that the system has a weak focus at , where , and determine conditions to maximize the number of additional local limit cycles that can be obtained near this fixed point. We will ultimately achieve an example of a cubic system with three local limit cycles about the degenerate focus and one local limit cycle about the weak focus.
Related Articles:
Variational Iteration Method Solutions for Certain Thirteenth Order Ordinary Differential Equations
Tunde A. Adeosun, Olugbenga J. Fenuga, Samuel O. Adelana, Abosede M. John, Ogunjimi Olalekan, Kazeem B. Alao
DOI: 10.4236/am.2013.410190 4,581 Downloads 6,620 Views Citations
Pub. Date: October 4, 2013
Lyapunov Stability Analysis of Certain Third Order Nonlinear Differential Equations
R. N. Okereke
DOI: 10.4236/am.2016.716161 1,789 Downloads 2,745 Views Citations
Pub. Date: October 25, 2016
On the Number of Cycles in a Graph
Nazanin Movarraei, Samina A. Boxwala
DOI: 10.4236/ojdm.2016.62005 2,717 Downloads 4,004 Views Citations
Pub. Date: March 31, 2016
Differential Analysis of Judicial Proceedings of Crime for Legal Entities
Hassan Ali Moazenzadegan, Behrouz Beigizadeh
DOI: 10.4236/ojps.2017.72019 1,177 Downloads 1,623 Views Citations
Pub. Date: April 14, 2017
Hermite Matrix Polynomial Collocation Method for Linear Complex Differential Equations and Some Comparisons
Mina Bagherpoorfard, Fahime Akhavan Ghassabzade
DOI: 10.4236/jamp.2013.15009 3,873 Downloads 6,962 Views Citations
Pub. Date: October 23, 2013