Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations


Griffiths, D. (2004) Introduction to Quantum Mechanics. Prentice Hall, Upper Saddle River.

has been cited by the following article:

  • TITLE: Universe and Matter Conjectured as a 3-Dimensional Lattice with Topological Singularities

    AUTHORS: Gérard Gremaud

    KEYWORDS: Massive Deformable 3D-Lattice, Dislocation, Disclination, Electromagnetism, Relativity, Gravitation, Quantum Physics, Cosmology, Standard Model of Particles, Theory of Everything

    JOURNAL NAME: Journal of Modern Physics, Vol.7 No.12, August 2, 2016

    ABSTRACT: One fundamental problem of modern physics is the search for a theory of everything able to explain the nature of space-time, what matter is and how matter interacts. There are various propositions, as Grand Unified Theory, Quantum Gravity, Supersymmetry, String and Superstring Theories, and M-Theory. However, none of them is able to consistently explain at the present and same time electromagnetism, relativity, gravitation, quantum physics and observed elementary particles. In this paper, one summarizes the content of a new book, published in English [2] and in French [3], in which it is suggested that Universe could be a massive elastic 3D-lattice, and that fundamental building blocks of Ordinary Matter could consist of topological singularities of this lattice, namely diverse dislocation loops and disclination loops. For an isotropic elastic lattice obeying Newton’s law, with specific assumptions on its elastic properties, one obtains the result that the behaviours of this lattice and of its topological defects display “all” known physics, unifying electromagnetism, relativity, gravitation and quantum physics, and resolving some longstanding questions of modern cosmology. Moreover, studying lattices with axial symmetries, represented by “colored” cubic 3D-lattices, one has identified a lattice structure whose topological defect loops coincide with the complex zoology of elementary particles, which could open a very promising field of research. Here, only main steps and principal results of the new theory are presented and discussed, without showing the mathematical concepts and developments contained in the book.