Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Luo, W. and Zhou, B. (2009) On Ordinary and Reverse Wiener Indices of Non-Caterpillars. Mathematical and Computer Modelling, 50, 188-193. http://dx.doi.org/10.1016/j.mcm.2009.02.010
has been cited by the following article:
TITLE: Reciprocal Complementary Wiener Numbers of Non-Caterpillars
AUTHORS: Yanli Zhu, Fuyi Wei, Feng Li
KEYWORDS: Reciprocal Complementary Wiener Number, Wiener Number, Caterpillar
JOURNAL NAME: Applied Mathematics, Vol.7 No.3, February 26, 2016
ABSTRACT: The reciprocal complementary Wiener number of a connected graph G is defined as where is the vertex set. is the distance between vertices u and v, and d is the diameter of G. A tree is known as a caterpillar if the removal of all pendant vertices makes it as a path. Otherwise, it is called a non-caterpillar. Among all n-vertex non-cater- pillars with given diameter d, we obtain the unique tree with minimum reciprocal complementary Wiener number, where . We also determine the n-vertex non-caterpillars with the smallest, the second smallest and the third smallest reciprocal complementary Wiener numbers.
Related Articles:
Mathematical Modelling in Placing of Fresh Concrete
Ahmet Bilgil
DOI: 10.4236/eng.2011.33023 5,861 Downloads 11,218 Views Citations
Pub. Date: March 7, 2011
Modelling Recycling Targets: Achieving a 50% Recycling Rate for Household Waste in Denmark
Amanda Louise Hill, Ole Leinikka Dall, Frits Møller Andersen
DOI: 10.4236/jep.2014.57064 4,568 Downloads 6,333 Views Citations
Pub. Date: May 28, 2014
Computer Modelling as an Aid to Forest and Woodland Restoration
Jonathan D. Majer, Adam Dunn, Jean-Paul Orsini
DOI: 10.4236/ojf.2014.42017 3,835 Downloads 5,414 Views Citations
Pub. Date: February 21, 2014
Computer Modelling of Aerothermodynamic Characteristics for Hypersonic Vehicles
Yuri Ivanovich Khlopkov, Anton Yurievich Khlopkov, Zay Yar Myo Myint
DOI: 10.4236/jamp.2014.25015 4,219 Downloads 5,374 Views Citations
Pub. Date: April 24, 2014
Mathematical modelling of a biofilm: The Adomian decomposition method
Subramanian Muthukaruppan, Alagu Eswari, Lakshmanan Rajendran
DOI: 10.4236/ns.2013.54059 3,531 Downloads 5,834 Views Citations
Pub. Date: April 19, 2013