SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Intergovernmental Panel on Climate Change (IPCC) (2001) Climate Change 2001—The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change.

has been cited by the following article:

  • TITLE: Assessment of Climate Change for Precipitation and Temperature Using Statistical Downscaling Methods in Upper Godavari River Basin, India

    AUTHORS: Vidya R. Saraf, Dattatray G. Regulwar

    KEYWORDS: Downscaling, CGCM3, HadCM3, Scenario, Temperature, Precipitation

    JOURNAL NAME: Journal of Water Resource and Protection, Vol.8 No.1, January 13, 2016

    ABSTRACT: In the present study SDSM downscaling model was used as a tool for downscaling weather data statistically in upper Godavari river basin. Two Global Climate Models (GCMs), CGCM3 and HadCM3, have been used to project future maximum temperature (Tmax), minimum temperature (Tmin) and precipitation. The predictor variables are extracted from: 1) the National Centre for Environmental Prediction (NCEP) reanalysis dataset for the period 1961-2003, 2) the simulations from the third-generation Hadlycentre Coupled Climate Model (HadCM3) and Coupled Global Climate Model (CGCM3) variability and changes in Tmax, Tmin and precipitation under scenarios A1B and A2 of CGCM3 model and A2 and B2 of HadCM3 model have been presented for future periods: 2020s, 2050s and 2080s. The scatter-plots and cross-correlations are used for verifying the reliability of the simulation. Maximum temperature increases in future for almost all the scenarios for both GCMs. Also downscaled future precipitation shows increasing trends for all scenarios.