Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Diasamidze, Ya. and Bakuridze, Al. (2015) On Some Properties of Regular Elements of Complete Semigroups Defined by Semilaices of the Class Σ4(x,8) International Journal of Engineering Science and Innovative Technology (IJESIT), 4, 8-15.
has been cited by the following article:
TITLE: Regular Elements of the Semigroup B X (D) Defined by Semilattices of the Class Σ2 (X, 8) and Their Calculation Formulas
AUTHORS: Nino Tsinaridze, Shota Makharadze, Guladi Fartenadze
KEYWORDS: Semilattice, Semigroup, Binary Relation, Regular Element
JOURNAL NAME: Applied Mathematics, Vol.6 No.14, December 30, 2015
ABSTRACT: The paper gives description of regular elements of the semigroup B X (D) which are defined by semilattices of the class Σ2 (X, 8), for which intersection the minimal elements is not empty. When X is a finite set, the formulas are derived, by means of which the number of regular elements of the semigroup is calculated. In this case the set of all regular elements is a subsemigroup of the semigroup B X (D) which is defined by semilattices of the class Σ2 (X, 8).
Related Articles:
Idempotent and Regular Elements of the Complete Semigroups of Binary Relations of the Class ∑3(X,9)
Barış Albayrak, Neşet Aydın
DOI: 10.4236/am.2015.62029 3,047 Downloads 3,406 Views Citations
Pub. Date: February 5, 2015
Regular Elements of the Complete Semigroups BX(D) of Binary Relations of the Class ∑2(X,8)
Nino Tsinaridze, Shota Makharadze
DOI: 10.4236/am.2015.63042 2,946 Downloads 3,316 Views Citations
Pub. Date: March 3, 2015
Generating Sets of the Complete Semigroups of Binary Relations Defined by Semilattices of the Class Σ2 (X,4)
Bariş Albayrak, Omar Givradze, Guladi Partenadze
DOI: 10.4236/am.2018.91002 612 Downloads 972 Views Citations
Pub. Date: January 19, 2018
Complete Semigroups of Binary Relations Defined by Semilattices of the Class ∑1(X,10)
Shota Makharadze, Neşet Aydın, Ali Erdoğan
DOI: 10.4236/am.2015.62026 3,293 Downloads 3,663 Views Citations
Pub. Date: February 4, 2015
Regular Elements of Bx(D) Defined by the Class ∑1(X,10)-I
Yasha Diasamidze, Nino Tsinaridze, Neşet Aydn, Neşet Aydn, Ali Erdoğan
DOI: 10.4236/am.2016.79078 1,348 Downloads 1,651 Views Citations
Pub. Date: May 27, 2016