Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Dragan, I. (2014) Coalitional Rationality and the Inverse Problem for Binomial Semivalues, In: Petrosjan, L. and Zenkevich, N., Eds., Contributions to Game Theory and Management, Vol. 7, 24-33.
has been cited by the following article:
TITLE: On the Coalitional Rationality of the Banzhaf Value and Other Non-Efficient Semivalues
AUTHORS: Irinel Dragan
KEYWORDS: Semivalues, Power Game, Power Core, Coalitional Rationality
JOURNAL NAME: Applied Mathematics, Vol.6 No.12, November 25, 2015
ABSTRACT: In the Inverse Set relative to a Semivalue, we are looking for a new game for which the Semivalue of the original game is coalitional rational. The problem is solved by means of the Power Game of the given game. The procedures of building the new game, as well as the case of the Banzhaf Value are illustrated by means of some examples.
Related Articles:
On the Coalitional Rationality of the Banzhaf Value and Other Non-Efficient Semivalues
Irinel Dragan
DOI: 10.4236/am.2015.612182 1,837 Downloads 2,109 Views Citations
Pub. Date: November 25, 2015
On the Coalitional Rationality and the Egalitarian Nonseparable Contribution
DOI: 10.4236/am.2019.105026 361 Downloads 589 Views Citations
Pub. Date: May 27, 2019
Game Theory Applications in a Water Distribution Problem
Ardeshir Ahmadi, Raquel Salazar Moreno
DOI: 10.4236/jwarp.2013.51011 6,021 Downloads 8,521 Views Citations
Pub. Date: January 25, 2013
On the Coalitional Rationality of the Shapley Value and Other Efficient Values of Cooperative TU Games
DOI: 10.4236/ajor.2014.44022 2,182 Downloads 2,923 Views Citations
Pub. Date: July 10, 2014
Research on Issues of Budget Performance Management on the Process of Budgeting by Game Theory
Zhenchuan Jiang, Xun Gong
DOI: 10.4236/jfrm.2019.84013 490 Downloads 836 Views Citations
Pub. Date: November 20, 2019