SCIRP Mobile Website

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Tamas, L. and Marcu, C. (2011) Detection and Tracking Experiments in Various Environments. 15th International Conference on Advanced Robotics (ICAR), Tallinn, 20-23 June 2011, 180-185.

has been cited by the following article:

  • TITLE: Mobile Detecting Robot Controlled by Smartphone Based on iOS

    AUTHORS: Hou-Tsan Lee, Hsiang-Lin Tsai, Zhong-Quan Chen, Yu-Ting Jiang

    KEYWORDS: Mobile Robot, Smartphone Controlled, iOS, Wi-Fi

    JOURNAL NAME: Engineering, Vol.6 No.12, November 13, 2014

    ABSTRACT: The proposed scheme is composed of a smartphone, a vehicle equipped with Wi-Fi module and an IPCam working as a detecting robot to explore the unknown environment. Besides, another vehicle equipped with Wi-Fi module is also developed as a trunk robot to extend the detecting range. On the other hand, these vehicles are designed to be driven by the smartphone based on iOS (an iPod Touch in the experiments) via Wi-Fi module along with some proper designs of control circuit mounted on the vehicles. By the audio-visual feedback signals from IPCam, the real-time scenario from the detecting area not only can be shown on the screen of the smartphone but also provides the information of the detected environment in order to guide the robot. Two control approaches were provided in the proposed control scheme, the touch-panel control and the smartphone-status control, to drive the vehicles with the help of visual feedback on the screen of the smartphone. Moreover, the trajectories of the robots were also recorded for further applications. Some experimental results are given to validate the satisfactory performance of the proposed control scheme.