Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Wazwaz, A.-M. (2008) The Extended tanh Method for New Compact and Noncompact Solutions for the KP-BBM and the ZK-BBM Equations. Chaos, Solitons and Fractals, 38, 1505-1516. http://dx.doi.org/10.1016/j.chaos.2007.01.135
has been cited by the following article:
TITLE: Application of Classification of Traveling Wave Solutions to the Zakhrov-Kuznetsov-Benjamin-Bona-Mahony Equation
AUTHORS: Li Yang
KEYWORDS: The Nonlinear Partial Differential Equation, The Zakharov-Kuznetsov-Benjamin-Bona-Mahony Equation, Traveling Wave Transform, Complete Discrimination System for Polynomial, The Traveling Wave Solution
JOURNAL NAME: Applied Mathematics, Vol.5 No.10, June 3, 2014
ABSTRACT: In order to get the traveling wave solutions of the Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZK-BBM) equation, it is reduced to an ordinary differential equation (ODE) under the travelling wave transformation first. Then complete discrimination system for polynomial is applied to the ZK-BBM equation. The traveling wave solutions of the equation can be obtained.
Related Articles:
Exact Solutions of Gardner Equations through tanh-coth Method
Lin Lin, Shiyong Zhu, Yinkang Xu, Yubing Shi
DOI: 10.4236/am.2016.718186 1,759 Downloads 2,666 Views Citations
Pub. Date: December 22, 2016
Solutions of Zhiber-Shabat and Related Equations Using a Modified tanh-coth Function Method
Luwai Wazzan
DOI: 10.4236/jamp.2016.46111 1,588 Downloads 2,176 Views Citations
Pub. Date: June 16, 2016
Expanding the Tanh-Function Method for Solving Nonlinear Equations
Nassar Hassan Abdel-All, Mohamed Abd-Allah Abdel-Razek, Abd-Allah Kamel Seddeek
DOI: 10.4236/am.2011.29151 6,478 Downloads 12,388 Views Citations
Pub. Date: September 19, 2011
Numerical Treatment of Initial Value Problems of Nonlinear Ordinary Differential Equations by Duan-Rach-Wazwaz Modified Adomian Decomposition Method
Ömür Umut, Serpil Yaşar
DOI: 10.4236/ijmnta.2019.81002 973 Downloads 1,545 Views Citations
Pub. Date: February 1, 2019
Exact Traveling Wave Solutions for the System of Shallow Water Wave Equations and Modified Liouville Equation Using Extended Jacobian Elliptic Function Expansion Method
Emad H. M. Zahran, Mostafa M. A. Khater
DOI: 10.4236/ajcm.2014.45038 4,145 Downloads 4,783 Views Citations
Pub. Date: December 25, 2014