Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Wazwaz, A.-M. (2005) Compact and Noncompact Physical Structures for the ZK-BBM Equation. Applied Mathematics and Computation, 169, 713-725. http://dx.doi.org/10.1016/j.amc.2004.09.062
has been cited by the following article:
TITLE: Application of Classification of Traveling Wave Solutions to the Zakhrov-Kuznetsov-Benjamin-Bona-Mahony Equation
AUTHORS: Li Yang
KEYWORDS: The Nonlinear Partial Differential Equation, The Zakharov-Kuznetsov-Benjamin-Bona-Mahony Equation, Traveling Wave Transform, Complete Discrimination System for Polynomial, The Traveling Wave Solution
JOURNAL NAME: Applied Mathematics, Vol.5 No.10, June 3, 2014
ABSTRACT: In order to get the traveling wave solutions of the Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZK-BBM) equation, it is reduced to an ordinary differential equation (ODE) under the travelling wave transformation first. Then complete discrimination system for polynomial is applied to the ZK-BBM equation. The traveling wave solutions of the equation can be obtained.
Related Articles:
The Physical Metric and Compact Objects
Yukio Tomozawa
DOI: 10.4236/jmp.2015.67101 2,812 Downloads 3,169 Views Citations
Pub. Date: June 30, 2015
A Compact Trust Computation and Management Approach for Defending against Derailed Attacks for Wireless Sensor Networks and Its Applications
R. Mohan Kumar, A. V. Ram Prasad
DOI: 10.4236/cs.2016.710275 1,507 Downloads 1,939 Views Citations
Pub. Date: August 24, 2016
Compact Extrapolation Schemes for a Linear Schrödinger Equation
Xiuling Yin
DOI: 10.4236/ajcm.2014.43017 4,182 Downloads 4,894 Views Citations
Pub. Date: June 3, 2014
Analysis on Sixth-Order Compact Approximations with Richardson Extrapolation for 2D Poisson Equation
Ruxin Dai, Pengpeng Lin
DOI: 10.4236/jamp.2018.66097 373 Downloads 820 Views Citations
Pub. Date: June 6, 2018
Natural Numbers Applied to Physical Constants: Spacetime Discreteness
Alberto Coe
DOI: 10.4236/jmp.2017.81002 1,081 Downloads 1,487 Views Citations
Pub. Date: December 28, 2016