Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Malik, M.A. and Asim Zafar, M. (2013) G-Subsets of an Invariant Subset of under the Modular Group Action. Utilitas Mathematica, 91, 377-387.
has been cited by the following article:
TITLE: On Subsets of Q(√m) Q under the Action of Hecke Groups H(λq)
AUTHORS: M. Aslam Malik, M. Asim Zafar
KEYWORDS: Quadratic Irrationals, Hecke Groups, Legendre Symbol, G-Set
JOURNAL NAME: Applied Mathematics, Vol.5 No.8, May 15, 2014
ABSTRACT: is the disjoint union of for all , where is the set of all roots of primitive second degree equations , with reduced discriminant equal to k2m. We study the action of two Hecke groups—the full modular group and the group of linear-fractional transformations on . In particular, we investigate the action of on for finding different orbits.
Related Articles:
The p.q.-Baer Property of Fixed Rings under Finite Group Action
Ling Jin, Hailan Jin
DOI: 10.4236/apm.2012.26059 4,978 Downloads 7,611 Views Citations
Pub. Date: November 12, 2012
Group Action on Fuzzy Modules
Mohammad Yamin, Poonam Kumar Sharma
DOI: 10.4236/am.2016.75038 2,526 Downloads 3,164 Views Citations
Pub. Date: March 18, 2016
Group-Invariant Solutions for the Generalised Fisher Type Equation
Kirsten Louw, Raseelo J. Moitsheki
DOI: 10.4236/ns.2015.713061 4,436 Downloads 4,909 Views Citations
Pub. Date: December 30, 2015
A Follow-Up on Projection Theory: Theorems and Group Action
Jean-Francois Niglio
DOI: 10.4236/alamt.2019.91001 416 Downloads 617 Views Citations
Pub. Date: March 29, 2019
Estimation of a Type of Form-Invariant Combined Signals under Autoregressive Operators
Yinsheng Zhang, Jing Yao, Dongyun Yi
DOI: 10.4236/ojs.2013.36045 2,771 Downloads 3,716 Views Citations
Pub. Date: December 31, 2013