Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
M. H. Lee, R. Efendi and Z. Ismail, “Modified Weighted for Enrollment Forecasting Based of Fuzzy Time Series,” Matematika, Vol. 25, No. 1, 2009, pp. 67-78.
has been cited by the following article:
TITLE: A New Bandwidth Interval Based Forecasting Method for Enrollments Using Fuzzy Time Series
AUTHORS: Hemant Kumar Pathak, Prachi Singh
KEYWORDS: Fuzzy Sets, Fuzzy Time Series, Fuzzy Logical Relations
JOURNAL NAME: Applied Mathematics, Vol.2 No.4, March 31, 2011
ABSTRACT: In this paper, we introduce the concept of (4/3)? bandwidth interval based forecasting. The historical enrollments of the university of Alabama are used to illustrate the proposed method. In this paper we use the new simplified technique to find the fuzzy logical relations.
Related Articles:
Fuzzy Time Series Forecasting Based On K-Means Clustering
Zhiqiang Zhang, Qiong Zhu
DOI: 10.4236/ojapps.2012.24B024 2,938 Downloads 5,165 Views Citations
Pub. Date: January 15, 2013
A New Bandwidth Interval Based Forecasting Method for Enrollments Using Fuzzy Time Series
Hemant Kumar Pathak, Prachi Singh
DOI: 10.4236/am.2011.24065 5,825 Downloads 10,226 Views Citations
Pub. Date: March 31, 2011
A Type of Combination Forecasting Method Based on Time Series Method and PLS
Liang Wan, Biao Luo, Hong-Mei Ji, Wei-Wei Yan
DOI: 10.4236/ajor.2012.24055 4,167 Downloads 6,690 Views Citations
Pub. Date: November 30, 2012
Oil-Price Forecasting Based on Various Univariate Time-Series Models
Gurudeo Anand Tularam, Tareq Saeed
DOI: 10.4236/ajor.2016.63023 3,104 Downloads 4,870 Views Citations
Pub. Date: May 18, 2016
Seasonal Based Electricity Demand Forecasting Using Time Series Analysis
T. M. Usha, S. Appavu Alias Balamurugan
DOI: 10.4236/cs.2016.710283 2,497 Downloads 3,799 Views Citations
Pub. Date: August 25, 2016