Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
J. F. Liu and Z. L. Deng, “Self-Tuning Weighted Measurement Fusion Kalman Filter for ARMA Signals with Colored Noise,” Applied Mathematics & Information Sciences, Vol. 6, No. 1, 2012, pp. 1-7.
has been cited by the following article:
TITLE: Estimation of a Type of Form-Invariant Combined Signals under Autoregressive Operators
AUTHORS: Yinsheng Zhang, Jing Yao, Dongyun Yi
KEYWORDS: Form-Invariant Signals; Autoregressive Operator; Autoregressive Noise; Parameter Estimation
JOURNAL NAME: Open Journal of Statistics, Vol.3 No.6, December 31, 2013
ABSTRACT: We focus on a type of combined signals whose forms remain invariant under the autoregressive operators. To extract the true signal from the autoregressive noise, we develop a strategy to separate parameters and use a two-step least squares approach to estimate the autoregressive parameters directly and then further give the estimate of the signal parameters. This method overcomes the difficulty that the autoregressive noise remains unknown in other methods. It can effectively separate the noise and extract the true signal. The algorithm is linear. The solution of the problem is computationally cheap and practical with high accuracy.
Related Articles:
Adaptive “Cubature and Sigma Points” Kalman Filtering Applied to MEMS IMU/GNSS Data Fusion during Measurement Outlier
Hamza Benzerrouk, Hassen Salhi, Alexander Nebylov
DOI: 10.4236/jst.2013.34018 5,048 Downloads 7,686 Views Citations
Pub. Date: December 20, 2013
Lévy Flights, 1/f Noise and Self Organized Criticality
Oliver López Corona, Pablo Padilla, Oscar Escolero, Alejandro Frank, Ruben Fossion
DOI: 10.4236/jmp.2013.43046 4,380 Downloads 7,585 Views Citations
Pub. Date: March 8, 2013
Analysis of SDEs Applied to SEIR Epidemic Models by Extended Kalman Filter Method
D. Ndanguza, I. S. Mbalawata, J. P. Nsabimana
DOI: 10.4236/am.2016.717175 1,663 Downloads 2,546 Views Citations
Pub. Date: November 23, 2016
Neural Model-Based Self-Tuning PID Strategy Applied to PEMFC
Cédric Damour, Michel Benne, Brigitte Grondin-Perez, Jean-Pierre Chabriat
DOI: 10.4236/eng.2014.64019 4,696 Downloads 5,771 Views Citations
Pub. Date: March 14, 2014
New Investigative Findings from the Debiased Converted-Measurement Kalman Filter
John N. Spitzmiller, Reza R. Adhami
DOI: 10.4236/iim.2010.27053 4,277 Downloads 6,851 Views Citations
Pub. Date: July 22, 2010