Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
W.-K. Wong and G. R. Bian, “Estimating Parameters in Autoregressive Models with Asymmetric Innovations,” Statistics and Probability Letters, Vol. 71, No. 1, 2005, pp. 61-70. http://dx.doi.org/10.1016/j.spl.2004.10.022
has been cited by the following article:
TITLE: Estimation of a Type of Form-Invariant Combined Signals under Autoregressive Operators
AUTHORS: Yinsheng Zhang, Jing Yao, Dongyun Yi
KEYWORDS: Form-Invariant Signals; Autoregressive Operator; Autoregressive Noise; Parameter Estimation
JOURNAL NAME: Open Journal of Statistics, Vol.3 No.6, December 31, 2013
ABSTRACT: We focus on a type of combined signals whose forms remain invariant under the autoregressive operators. To extract the true signal from the autoregressive noise, we develop a strategy to separate parameters and use a two-step least squares approach to estimate the autoregressive parameters directly and then further give the estimate of the signal parameters. This method overcomes the difficulty that the autoregressive noise remains unknown in other methods. It can effectively separate the noise and extract the true signal. The algorithm is linear. The solution of the problem is computationally cheap and practical with high accuracy.
Related Articles:
Estimating the Probability of Earthquake Occurrence and Return Period Using Generalized Linear Models
Shrestha Noora
DOI: 10.4236/gep.2019.79002 714 Downloads 1,461 Views Citations
Pub. Date: September 16, 2019
Development and Application of a Modified Genetic Algorithm for Estimating Parameters in GMA Models
José A. Hormiga, Carlos González-Alcón, Néstor V. Torres
DOI: 10.4236/am.2014.516236 3,543 Downloads 4,001 Views Citations
Pub. Date: August 29, 2014
Bulk Viscous Anisotropic Cosmological Models with Dynamical Cosmological Parameters G and ∧
S. Kotambkar, G. P. Singh, R. Kelkar
DOI: 10.4236/ns.2015.74021 3,660 Downloads 4,270 Views Citations
Pub. Date: April 15, 2015
Implementation of the Estimating Functions Approach in Asset Returns Volatility Forecasting Using First Order Asymmetric GARCH Models
Timothy Ndonye Mutunga, Ali Salim Islam, Luke Akong’o Orawo
DOI: 10.4236/ojs.2015.55047 2,994 Downloads 3,687 Views Citations
Pub. Date: August 19, 2015
Generalized Method of Moments and Generalized Estimating Functions Based on Probability Generating Function for Count Models
Andrew Luong
DOI: 10.4236/ojs.2020.103031 148 Downloads 322 Views Citations
Pub. Date: June 11, 2020