Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
H. H. Kelejian and I. R. Prucha, “A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model,” International Economic Review, Vol. 40, No. 2, 1999, pp. 509-533. http://dx.doi.org/10.1111/1468-2354.00027
has been cited by the following article:
TITLE: Estimation of a Type of Form-Invariant Combined Signals under Autoregressive Operators
AUTHORS: Yinsheng Zhang, Jing Yao, Dongyun Yi
KEYWORDS: Form-Invariant Signals; Autoregressive Operator; Autoregressive Noise; Parameter Estimation
JOURNAL NAME: Open Journal of Statistics, Vol.3 No.6, December 31, 2013
ABSTRACT: We focus on a type of combined signals whose forms remain invariant under the autoregressive operators. To extract the true signal from the autoregressive noise, we develop a strategy to separate parameters and use a two-step least squares approach to estimate the autoregressive parameters directly and then further give the estimate of the signal parameters. This method overcomes the difficulty that the autoregressive noise remains unknown in other methods. It can effectively separate the noise and extract the true signal. The algorithm is linear. The solution of the problem is computationally cheap and practical with high accuracy.
Related Articles:
Comparison of the Sampling Efficiency in Spatial Autoregressive Model
Yoshihiro Ohtsuka, Kazuhiko Kakamu
DOI: 10.4236/ojs.2015.51002 3,789 Downloads 4,574 Views Citations
Pub. Date: January 22, 2015
Application of the Improved Generalized Autoregressive Conditional Heteroskedast Model Based on the Autoregressive Integrated Moving Average Model in Data Analysis
Qi Yang, Yishu Wang
DOI: 10.4236/ojs.2019.95036 313 Downloads 576 Views Citations
Pub. Date: September 6, 2019
H- and H2-Cordial Labeling of Some Graphs
Freeda Selvanayagom, Robinson S. Chellathurai
DOI: 10.4236/ojdm.2012.24030 3,567 Downloads 5,876 Views Citations
Pub. Date: November 1, 2012
Parameter Estimations for Generalized RayleighDistribution under Progressively Type-I IntervalCensored Data
Y. L. Lio, Ding-Geng Chen, Tzong-Ru Tsai
DOI: 10.4236/ojs.2011.12006 7,413 Downloads 13,865 Views Citations
Pub. Date: July 29, 2011
A case research on economic spatial distribution and differential of agriculture in China ——An application to Hunan province based on the data of 1999, 2006 and 2010
Jian Wang, Zhenghe Zhang, Baozhong Su, Liyang Zhang
DOI: 10.4236/as.2012.38121 3,650 Downloads 5,415 Views Citations
Pub. Date: December 19, 2012