Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
R. Bhatia and F. Kittaneh, “The Matrix Arithmetic-Geometric Mean Inequality Revisited,” Linear Algebra and Its Applications, Vol. 428, 2008, pp. 2177-2191. http://dx.doi.org/10.1016/j.laa.2007.11.030
has been cited by the following article:
TITLE: More Results on Singular Value Inequalities for Compact Operators
AUTHORS: Wasim Audeh
KEYWORDS: Compact Operator; Inequality; Positive Operator; Self-Adjoint Operator; Singular Value
JOURNAL NAME: Advances in Linear Algebra & Matrix Theory, Vol.3 No.4, December 6, 2013
ABSTRACT: The well-known arithmetic-geometric mean inequality for singular values, according to Bhatia and Kittaneh, says that if and are compact operators on a complex separable Hilbert space, then Hirzallah has proved that if are compact operators, then We give inequality which is equivalent to and more general than the above inequalities, which states that if are compact operators, then
Related Articles:
An Optimal Double Inequality among the One-Parameter, Arithmetic and Geometric Means
Hongya Gao, Shuangli Li, Yanjie Zhang, Hong Tian
DOI: 10.4236/jamp.2013.17001 2,557 Downloads 4,431 Views Citations
Pub. Date: December 12, 2013
A Generalized Inequality for Covariance and Its Applications
Shiyou Lin, Yuanyuan Chen
DOI: 10.4236/am.2018.99073 621 Downloads 1,028 Views Citations
Pub. Date: September 28, 2018
On Hilbert’s Integral Inequality and Its Applications
Waad T. Sulaiman
DOI: 10.4236/am.2011.23045 7,017 Downloads 11,157 Views Citations
Pub. Date: March 24, 2011
The Triangle Inequality and Its Applications in the Relative Metric Space
Zhanjun Su, Sipeng Li, Jian Shen
DOI: 10.4236/ojdm.2013.33023 3,036 Downloads 5,254 Views Citations
Pub. Date: July 12, 2013
Using Tangent Boost along a Worldline and Its Associated Matrix in the Lie Algebra of the Lorentz Group
Michel Langlois, Martin Meyer, Jean-Marie Vigoureux
DOI: 10.4236/jmp.2017.88079 679 Downloads 979 Views Citations
Pub. Date: July 7, 2017