SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

H. M. O’Hagan, W. Wang, S. Sen, C. D. Shields, S. S. Lee, Y. W. Zhang, E. G. Clements, Y. Cai, L. Van Neste, H. Easwaran, R. A. Casero, C. L. Sears and S. B. Baylin, “Oxidative Damage Targets Complexes Containing DNA Methyltransferases, SIRT1, and Polycomb Members to Promoter CpG Islands,” Cancer Cell, Vol. 20, No. 5, 2011, pp. 606-619. http://dx.doi.org/10.1016/j.ccr.2011.09.012

has been cited by the following article:

  • TITLE: Manifestation of Key Molecular Genetic Markers in Pharmacocorrection of Endogenous Iron Metabolism in MCF-7 and MCF-7/DDP Human Breast Cancer Cells

    AUTHORS: Vasyl’ Chekhun, Natalia Lukianova, Dmytro Demash, Tetiana Borikun, Svyatoslav Chekhun, Yulia Shvets

    KEYWORDS: Nanocomposite; Iron Metabolism; Apoptosis; ROS; Drug Resistance; Breast Cancer Cells

    JOURNAL NAME: CellBio, Vol.2 No.4, December 4, 2013

    ABSTRACT: Effects of the nanocomposite and its components (magnetic fluid, cisplatin) on the level of endogenous iron exchange and the key links of genetic and epigenetic regulation of apoptotic program of sensitive and resistant MCF-7 cells were examined. We showed genetic and epigenetic mechanisms of action of nanocomposite of magnetic fluid and cisplatin. Nanocomposite caused elevation of number of cells in apoptosis in sensitive and especially resistant MCF-7 cells compared to cisplatin alone. It was proved that impact of nanocomposite on MCF-7/S and MCF-7/DDP cells caused more significant changes in expression of apoptosis regulators p53, Bcl-2 and Bax. We also suggested that changes in endogenous iron homeostasis and activation of free radical processes caused significant impact on apoptosis. Those changes included changes in methylation and expression of transferrin, its receptors, ferritin heavy and light chains (predominantly in resistant cell line), which caused activation of free radical synthesis and development of oxidative stress. We also showed that nanocomposite impact resulted into significant changes in expression of miRNA-34a and miRNA-200b, which regulated apoptosis, cell adhesion, invasion and activity of ferritin heavy chains gene. Thus, use of nanocomposite containing cisplatin and ferromagnetic as exogenous source of Fe ions caused changes of endogenous iron levels in sensitive and resistant cells allowing to increase specific activity of cytostatics and overcome factors, which promoted MDR development. Pharmacocorrection of endogenous iron metabolism allowed increasing antitumor activity of cisplatin and overcoming drug resistance.