Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

D. G. E. Grigoiadis and J. G. Bartzis, “LES of the Flow Past a Rectangular Cylinder Using the Immersed Boundary Concept,” International Journal for Numerical Methods in Fluids, Vol. 41, No. 6, 2003, pp. 615-632. http://dx.doi.org/10.1002/fld.458

has been cited by the following article:

  • TITLE: Cold-State Investigation on a Flame Holder

    AUTHORS: Yiqing Du

    KEYWORDS: Flame Holder; Bluff Body; Flame Stability; Coherent Structure; Vortex Shedding

    JOURNAL NAME: Journal of Power and Energy Engineering, Vol.1 No.7, November 28, 2013

    ABSTRACT: Slitty bluff body is widely used as a high-performance flame holder in power industry. To understand the flame stability mechanism, the evolution of the near wake over a slitty bluff body in cold state was numerically investigated using the renormalization group (RNG) k-ε model at Reynolds number of 470,000. The coherent structure of the near wake was identified by the vortex shedding simulation. To explain the vortex shedding, a mechanism that single vortex of large size suddenly immerses two shear layers was proposed. To quantitatively compare the near wakes at different gap ratio, a vortex shedding character dimension was first proposed. This character dimension has positive correlation with flame stability. Particle-image velocimetry (PIV) measurements in a close wind tunnel were also carried out to confirm the observation from the numerical study. The evidence shows that the numerical results are of good agreement with the cold-state experiments.