TITLE:
Development of Dispersion Models for the Simulation of Fluid Catalytic Cracking of Vacuum Gas Oil in Riser Reactor
AUTHORS:
Kenneth Kekpugile Dagde
KEYWORDS:
Modelling and Simulation, Axial Dispersion, Vacuum Gas Oil, Riser Reactor, Visual Basic 6.0
JOURNAL NAME:
Advances in Chemical Engineering and Science,
Vol.8 No.4,
October
26,
2018
ABSTRACT: Dispersion models for the simulation of an industrial Fluid Catalytic Cracking Riser Reactor have been developed. The models were developed based on the principle of conservation of mass and energy on the reacting species due to bulk flow and axial dispersion. The four-lump kinetic scheme was used to describe the cracking reactions occurring in the reactor. The model equations were a set of parabolic Ordinary Differential Equations which were reduced to first order differential equations by appropriate substitutions and integrated numerically using 4th order Runge Kutta algorithm using Visual Basic 6.0. Results obtained showed a maximum percentage deviation ranging from 0.31% to 5.7% between model predictions and industrial plant data indicating reasonable agreement. Simulation of model at various operating parameters gave
optimum gasoline yield of 45.6% of the most significant variable of temperature (658 K), superficial velocity (0.1 m/s),
catalyst to gas oil ratio (7.0) and diffusion coefficient of 0.23 m2/s.