TITLE:
Correct a Wide Spread Conclusion of Cantor Set Theory
AUTHORS:
Ming Xiong
KEYWORDS:
Cantor, Error of Set Theory, Correspondence, Meanings of Multivariate Function
JOURNAL NAME:
Advances in Pure Mathematics,
Vol.5 No.9,
July
8,
2015
ABSTRACT: The Cantor’s conclusion that “there is a one-one correspondence between the points on n-dimensional space and the points on the line” appears in the numerous current documents. By introducing a monotonic and continuous function, a one-one correspondence between two intervals is built; and by using parametric equations of the curve, a one-one correspondence from the points on the curve to the points on the line is established. Specially, the meanings of multivariate functions are given. By using a n-variable equation with a parameter, a correspondence from n-dimensional space area to a interval is built, so the wrong conclusion is completely denied. The paper enriches calculus and can reduce the teaching difficulty of real function in some degree. The expression of moving curve (surface) limit is given in the paper. More importantly, after the conclusion is corrected, it will be necessary and possible to re-establish the theory and the approach about multivariable differential calculus.