SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


J. R. Zimmerman, U. Ghosh, R. N. Millward, T. S. Bridges and R. G. Luthy, “Addition of Carbon Sorbents to Reduce PCB and PAH Bioavailability in Marine Sediments: Physicochemical Tests,” Environmental Science and Technology, Vol. 38, No. 20, 2004, pp. 5458-5464. doi:10.1021/es034992v

has been cited by the following article:

  • TITLE: Biodegradation of 2,6-Dichlorophenol Wastewater in Soil Column Reactor in the Presence of Pineapple Peels-Derived Activated Carbon, Palm Kernel Oil and Inorganic Fertilizer

    AUTHORS: Samuel E. Agarry, Mujidat O. Aremu, Oluwafunmilayo A. Aworanti

    KEYWORDS: Activated Carbon; Biodegradation; Fertilizer; Vegetable Oil; Kinetics; 2, 6-Dichlorophenol

    JOURNAL NAME: Journal of Environmental Protection, Vol.4 No.6, June 17, 2013

    ABSTRACT: In this study, the potential effects of palm kernel oil (PKO), pineapple peels derived-activated carbon (PPAC) and NPK fertilizer (20:10:10) as amendment agents on the natural bioattenuation of 2,6-dichlorophenol (2,6-DCP) in tropical agricultural soil were investigated. The effect of PPAC dosage on 2,6-DCP biodegradation was also studied. Column reactors containing soil were spiked with 2,6-dichlorophenol (2,6-DCP) wastewater (300 mg/l) and amended with PKO, NPK fertilizer and PPAC alone or in combinations. The rates of 2,6-DCP biodegradation were studied for a remediation period of 42 days under laboratory conditions. The results showed that there was a positive relationship between the rate of 2,6-DCP biodegradation, bacterial growth rate and presence of NPK fertilizer and PPAC (alone or in combination) in soil column microcosms contaminated with 2,6-DCP. The 2,6-DCP biodegradation data fitted well to the first-order kinetic model. The model revealed that 2,6-DCP contaminated-soil microcosms amended with NPK fertilizer and PPAC (alone or in combination) had higher biodegradation rate constants (k) as well as lower half-life times (t1/2) than soil column microcosms amended with PKO and unamended soil (natural attenuation) remediation system. Thus, the use of combined NPK fertilizer and activated carbon (NPK + PPAC) to enhance 2,6-DCP degradation in the soil could be one of the severally sought bioremediation strategies of remediating natural ecosystem (environment) contaminated with organic chemicals.