SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

Article citations


C. Linnemann and M. W. Coney, “The Isoengine: Realization of a High-Efficiency Power Cycle Based on Isothermal Compression,” International Journal of Energy Technology and Policy, Vol. 3, No. 1-2, 2005, pp. 66-84. doi:10.1504/IJETP.2005.006740

has been cited by the following article:

  • TITLE: Towards Implementation of Smart Grid: An Updated Review on Electrical Energy Storage Systems

    AUTHORS: Md Multan Biswas, Md Shafiul Azim, Tonmoy Kumar Saha, Umama Zobayer, Monalisa Chowdhury Urmi

    KEYWORDS: Battery; Distributed Generation; Hybrid Energy Storage Systems; Power Quality; Smart Grid

    JOURNAL NAME: Smart Grid and Renewable Energy, Vol.4 No.1, February 26, 2013

    ABSTRACT: A smart grid will require, to greater or lesser degrees, advanced tools for planning and operation, broadly accepted communications platforms, smart sensors and controls, and real-time pricing. The smart grid has been described as something of an ecosystem with constantly communication, proactive, and virtually self-aware. The use of smart grid has a lot of economical and environmental advantages; however it has a downside of instability and unpredictability introduced by distributed generation (DG) from renewable energy into the public electric systems. Variable energies such as solar and wind power have a lack of stability and to avoid short-term fluctuations in power supplied to the grid, a local storage subsystem could be used to provide higher quality and stability in the fed energy. Energy storage systems (ESSs) would be a facilitator of smart grid deployment and a “small amount” of storage would have a “great impact” on the future power grid. The smart grid, with its various superior communications and control features, would make it possible to integrate the potential application of widely dispersed battery storage systems as well other ESSs. This work deals with a detailed updated review on available ESSs applications in future smart power grids. It also highlights latest projects carried out on different ESSs throughout all around the world.