SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


F. A. P. Barúqui and A. Petraglia, “Linearly Tunable CMOS OTA with Constant Dynamic Range Using Source-Degenerated Current Mirrors,” IEEE Transactions on Circuits and Systems II, Vol. 53, No. 9, 2006, pp. 791-801. doi:10.1109/TCSII.2006.881162

has been cited by the following article:

  • TITLE: A 0.9 V Supply OTA in 0.18 μm CMOS Technology and Its Application in Realizing a Tunable Low-Pass Gm-C Filter for Wireless Sensor Networks

    AUTHORS: Soolmaz Abbasalizadeh, Samad Sheikhaei, Behjat Forouzandeh

    KEYWORDS: OTA; Low Voltage; Low Power; Bulk Driven; Gm-C Filter

    JOURNAL NAME: Circuits and Systems, Vol.4 No.1, January 25, 2013

    ABSTRACT: A low voltage low power operational transconductance amplifier (OTA) based on a bulk driven cell and its application to implement a tunable Gm-C filter is presented. The linearity of the OTA is improved by attenuation and source degeneration techniques. The attenuation technique is implemented by bulk driven cell which is used for low supply voltage circuits. The OTA is designed to operate with a 0.9 V supply voltage and consumes 58.8 μW power. A 600 mVppd sine wave input signal at 1 MHz frequency shows total harmonic distortion (THD) better than -40 dB over the tuning range of the transconductance. The OTA has been used to realize a tunable Gm-C low-pass filter with gain tuning from 5 dB to 21 dB with 4 dB gain steps, which results in power consumptions of 411.6 to 646.8 μW. This low voltage filter can operate as channel select filter and variable gain amplifier (VGA) for wireless sensor network (WSN) applications. The proposed OTA and filter have been simulated in 0.18 μm CMOS technology. Corner case and temperature simulation results are also included to forecast process and temperature variation affects after fabrication.