SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Yu Wang and Jorge J. Santiago-Aviles, “Large negative magnetoresistance and strong localization in highly disordered electrospun pregraphitic carbon nanofiber”, Appl. Phys. Lett., vol. 89, pp. 123119 (1-3), September 2006.

has been cited by the following article:

  • TITLE: Low Temperature Electrical Transport in Double Layered CMR Manganite La1.2Sr1.4Ba0.4Mn2O7

    AUTHORS: Y.S. Reddy, P. Kistaiah, C. Vishnuvardhan Reddy

    KEYWORDS: Layered Manganite; Magnetoresistance; Transport Behavior; Variable Range Hopping; Magnon Scattering

    JOURNAL NAME: Advances in Materials Physics and Chemistry, Vol.2 No.4B, January 10, 2013

    ABSTRACT: The electrical transport behavior and magnetoresistance (MR) of a polycrystalline double layered manganite La1.2Sr1.4Ba0.4Mn2O7, synthesized by the sol-gel method, are investigated in the temperature range 4.2 K - 300 K. The sample exhibits an insulator-to-metal transition at 87 K (TIM) and the spin-glass (SG)-like behavior is observed below 50 K (TSG). The transport behavior is analyzed in the entire temperature range considering three different regions: paramagnetic insulating region (T>TIM), ferromagnetic metallic region (TSG IM) and antiferromagnetic insulating region (TSG) by fitting the temperature dependent resistivity data to the equations governing the conduction process in the respective temperature regions. The results show that the conduction at T>TIM follows Mott variable range hopping (VRH) process, while the two-magnon scattering process is evidenced at TSG IM which is suppressed with the applied magnetic field of 4 T. The low temperature conductivity data are also fitted with Mott VRH equation. The sample exhibits a large MR (≈45%) over a temperature range 5 K – 50 K and it shows ≈32% MR at 5 K with a magnetic field of 0.5 T.