SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


G. R. Saini, T. L. Chow, and I. Ghanen, “Compatibility Indexes of Some Agricultural Soils of New Brunswick, Canada,” Soil Science, Vol. 137, 1984, pp. 33-38. doi:10.1097/00010694-198401000-00005

has been cited by the following article:

  • TITLE: Evaluation of Shear Strength and Cone Penetration Resistance Behavior of Tropical Silt Loam Soil under Uni-Axial Compression

    AUTHORS: Seth I. Manuwa, Omolola C. Olaiya

    KEYWORDS: Loamy Soils; Applied Pressure; Bulk Density; Penetration Resistance; Moisture Content; Shear Strength; Nigeria

    JOURNAL NAME: Open Journal of Soil Science, Vol.2 No.2, June 22, 2012

    ABSTRACT: Laboratory investigations were conducted to study strength characteristics of silt loam soil of Ilorin, Kwara State, Nigeria, under uni-axial compression tests. The main objective of this study was to evaluate the effects of applied pressure and moisture content on strength indices such as bulk density, penetration resistance and shear strength of the soil and to develop relationships between the strength indices for predictive purposes necessary in soil management. The compression was carried out at different moisture contents determined according to the consistency limits of the soil. The applied pressure ranged from 75 to 600 kPa. Values of bulk density, penetration resistance and shear strength increased with increase in moisture content up to peak values after which the values decreased with further increase in moisture content. Regression models were used to describe the trends in the results for the soil. Results also showed that bulk density and soil strength normally regarded as indicators of soil quality are affected by moisture content and applied pressure and that these properties can be predicted using the models generated from the study.