SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

R. Kant, C. Ghosh, L. Singh and N. Tripathi, “Effect of Bacterial and Fungal Abundance in Soil on the Emission of Carbon Dioxide from Soil in Semi-Arid Climate in India,” Survival and Sustainability Part 1, 2011, pp. 151-161.

has been cited by the following article:

  • TITLE: Asymmetric Variation in Soil Carbon Emission in Sub-Tropics

    AUTHORS: Rashmi Kant, Chirashree Ghosh

    KEYWORDS: Soil Respiration; Carbon Emission; Bacterial Abundance; Fungal Population; Soil Depth; Climate Change

    JOURNAL NAME: Atmospheric and Climate Sciences, Vol.2 No.1, January 19, 2012

    ABSTRACT: Carbon dioxide emission from soil, known as soil respiration, is one of the major sources of the atmospheric carbon. Understanding the relationship between emission rate and the factors associated with the emission process is important in global carbon emission management. The present study investigated soil respiration at three ecologically diverse locations in northern India. CO2 emission was measured in-situ by modified alkali absorption method at three different depths, top-soil (0 cm - 2 cm depth), mid-soil (20 cm depth) and deep-soil (40 cm depth) at each location. Rate of carbon emission from soil varied with location and time. The rate was higher at Riverine Zone (RZ) which had high soil moisture content and profuse ground vegetation compared to Hilly Zone (HZ) containing dry soil and scarce vegetation. The emission rate was also greater in grassland than the plantation area. Rate of carbon emission from soil was heterogeneous along different depths below the ground. Diel variation in emission rate was greater at HZ compared to RZ. Higher microbial population in soil was detected in RZ than HZ. However, the bacterial count out-numbered the fungal count in soils at most places. The study indicates a positive relationship between soil respiration rate and microbial abundance. The fungal population was strongly correlated with CO2 emission rate.