SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


G. Zhifang and W. H. Loescher, “Expression of a Celery Mannose-6-phosphate Reductase in Arabidopsis thaliana Enhances Salt Tolerance and Induces Biosynthesis of Both Mannitol and a Glucosyl-Mannitol Dimer,” Plant Cell and Environment, Vol. 26, No. 2, 2003, pp. 275-283. doi:10.1046/j.1365-3040.2003.00958.x

has been cited by the following article:

  • TITLE: Physiological Responses of Tamarix ramosissima to Extreme NaCl Concentrations

    AUTHORS: Jacob M. Carter, Jesse B. Nippert

    KEYWORDS: Chlorophyll Fluorescence, Gas Exchange, Proline, Saltcedar, Salt stress, Tamarisk

    JOURNAL NAME: American Journal of Plant Sciences, Vol.2 No.6, December 5, 2011

    ABSTRACT: Hydrologic alterations of river systems in western North America over the past century have increased soil salinity, contributing to the establishment and spread of an introduced halophytic species, Tamarix ramosissima (Ledeb.). The physiological responses of Tamarix ramosissima to salinity stress are incompletely known. To assess the salinity tolerance of this species, we measured several whole plant and leaf-level physiological responses of Tamarix ramosissima cuttings grown in a controlled environment over three NaCl concentrations (0, 15 and 40 g l-1). Tamarix ramosissima photosynthesis (A2000), stomatal conductance to water (gs), water potential (Ψw), and the maximum quantum yield of photosystem II (Fv/Fm) decreased at 15 and 40 g l-1 NaCl compared to control treatments. However, after approximately 35 days, Tamarix ramosissima had increased photosynthetic rates, maximum quantum yield of photosystem II, and stomatal conductance to water. These data suggests that physiological functioning of Tamarix ramosissima acclimated to extremely high NaCl concentrations over a relatively short period of time. Additionally, we present preliminary evidence that suggests proline synthesis may be the mechanism by which this species adjusts osmotically to increasing salinity.