SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Dougher, T.A.O. and Bugbee, B. (2001) Evidence for Yellow Light Suppression of Lettuce Growth. Photochemistry and Photobiology, 73, 208-212.<0208:EFYLSO>2.0.CO;2

has been cited by the following article:

  • TITLE: How Do White LEDs’ Spectra Affect the Fresh Weight of Lettuce Grown under Artificial Lighting in a Plant Factory?—A Statistical Approach

    AUTHORS: Na Lu, Suthisak Saengtharatip, Michiko Takagaki, Atsushi Maruyama, Masao Kikuchi

    KEYWORDS: Broad Spectrum LED, Lettuce Yield, Narrow Spectrum LED, Response Function, Spectrum Distribution

    JOURNAL NAME: Agricultural Sciences, Vol.10 No.7, July 25, 2019

    ABSTRACT: Monochromatic light-emitting diode lamps (LEDs), emitting red and blue lights, revolutionized crop production in closed-system plant factories with artificial lighting in the early 1990s. The LED industry developed broad-spectrum white-LEDs by 2010, and many types of white-LEDs for home and office uses are now available for plant factory entrepreneurs. This paper tries to clarify whether these white-LEDs can be used as effective light sources in plant factories by examining what types of spectrum distribution are better suited for plant production. An experiment was conducted using seven LEDs, of which six were white-LEDs, to compare the performance in producing lettuce, and the results were compared with recent studies that used white-LEDs for growing lettuce under closed-system production conditions. Results showed that broad-spectrum white-LEDs performed significantly better than narrow-spectrum LEDs. Among lights in conventional color bands, red and blue lights give critical effects on plant growth, not in isolation but in combination; not too “cool” white LEDs perform better. Green and far-red lights also have some positive effects. Altogether, for a given light intensity, broad-spectrum white LEDs outperform narrow-spectrum LEDs. It is found that the spectrum distribution for white-LEDs to attain high productivity in lettuce production is such that the percentage share of photon flux density by conventional color band falls in the following ranges: 0%