SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

Article citations


Zhang, X., Chen, J., Lai, Z., Zhai, L., & Lin, M. (2017). Analysis of Special Strong Wind and Severe Rainstorm Caused by Typhoon Rammasun in Guangxi, China. Journal of Geoscience and Environment Protection, 5, 235-251.

has been cited by the following article:

  • TITLE: Study on Design Rainstorm Profile in Liuzhou City Based on Pilgrim & Cordery Method

    AUTHORS: Xiaoling Su, Dong Xie, Lei Liu, Chunrong Liang, Zhourong Liu, Yu Li, Qiu Lan, Le Ren

    KEYWORDS: Liuzhou City, Pilgrim & Cordery Method, Short-Time Rainstorm, Design Rainstorm Profile

    JOURNAL NAME: Journal of Geoscience and Environment Protection, Vol.7 No.3, March 28, 2019

    ABSTRACT: Liuzhou City is located in Guangxi Zhuang Autonomous Region of China. It has a warm and rainy climate and belongs to the middle subtropical monsoon climate. It is a rainstorm and flood-prone area. The work of flood drainage and waterlogging prevention is very important. The “minute to minute” rainfall process data of Liuzhou National Meteorological Observation Station from 1975 to 2014 and the Pilgrim & Cordery method were used to estimate the short-time design rainstorm profile of Liuzhou City, and the profiles of the rainfall lasting for 30, 60, 90, 120, 150, and 180 min were obtained. The research shows that the same rain duration and different recurrence period conditions are consistent with the rainstorm profile. The rainfall duration of 30, 60, 90, 120, and 180 min generally shows single-peak rainstorm profile, and the rainfall duration of 150 min shows double-peak rainstorm profile. Most peaks of each short-time design rainstorm profile are at or ahead of the 1/3 part of the entire rainfall process. During the same recurrence period, the rainfall in peak period fluctuated with the increase of the duration, and the intensity of rainfall increased with the prolonging of the recurrence period.