SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Soane, B. D., & van Ouwerkerk, C. (1994). Chap.1. Soil Compaction Problems in World Agriculture. In: Developments in Agricultural Engineering (pp. 1-21). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-444-88286-8.50009-X

has been cited by the following article:

  • TITLE: Analyzing and Projecting Soil Moisture and Cone Penetrability Variations in Forest Soils

    AUTHORS: Marie-France Jones, Paul Arp

    KEYWORDS: Forest Soils, Soil Moisture, Cone Penetration, Digital Elevation Modelling, Cartographic Depth-to-Water, Multilinear Regression, Confusion Matrix

    JOURNAL NAME: Open Journal of Forestry, Vol.9 No.2, March 21, 2019

    ABSTRACT: This article details how forest soil moisture content (MC) and subsequent resistances to cone penetration (referred below as Cone Index, CI) vary by daily weather, season, topography, site and soil properties across eleven harvest blocks in northwestern New Brunswick. The MC- and CI-affecting soil variables refer to density, texture, organic matter content, coarse fragment content, and topographic position (i.e., elevation, and the seasonally affected cartographic depth-to-water (DTW) pattern). The harvest blocks were transect-sampled inside and outside their wood-forwarding tracks at varying times throughout the year. In detail, 61% of the pore-filled moisture content (MCPS) determinations inside and outside the tracks could be related to topographic position, coarse fragments, bulk density, and forest cover type specifications. In addition, 40% of the CI variations could be related to soil depth, MCPS, and block-specific cover type. Actual versus model-projected uncertainties amounted to ΔMCPS ≤ ± 15% and ΔCI ≤ ± 0.5 MPa, 8 times out of 10. Block-centered MC and CI projections were obtained through: 1) daily hydrological modelling using daily precipitation and air temperature weather-station records nearest each block, and 2) digitally mapped variations in soil properties, elevation, DTW and forest cover type, done at 10 m resolution.