SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Monk, J.M., Lepp, D., Wu, W., Graf, D., McGillis, L.H., Hussain, A., Carey, C., Robinson, L.E., Liu, R., Tsao, R. and Brummer, Y. (2017) Chickpea-Supplemented Diet Alters the Gut Microbiome and Enhances Gut Barrier Integrity in c57bl/6 Male Mice. Journal of Functional Foods, 38, 663-674.
https://doi.org/10.1016/j.jff.2017.02.002

has been cited by the following article:

  • TITLE: Gut Microbiota Dysbiosis in Cafeteria Diet Fed Sprague Dawley Rats

    AUTHORS: Kavitha Varadharajan, Muralitharan Shanmugakonar, Sandra Concepcion Das, Hamda A. Al-Naemi

    KEYWORDS: Gut Microbiota, Obesity, Cafeteria Diet, Feces, Weight Gain Resistant, Next Generation Sequencing

    JOURNAL NAME: Advances in Microbiology, Vol.8 No.12, December 25, 2018

    ABSTRACT: Diet plays a major role in the body physiology and metabolism. The quantity, nature and stability of the macronutrients present in the diet have a major impact on the composition of gut microbiota. Gut microbiota plays a major role in the body metabolism and leads to obese or lean phenotype. Bacteriodetes, Firmicutes, Proteobacteria and Actinobacteria are the major microbes that inhabit in the region of the gut. We made an attempt to study the effects of Cafeteria (CAF) diets and normal chow diets on diet consumption, weight gain, metabolism and composition of gut microbiota in fecal and cecum samples from three weeks old Sprague Dawley (SD) rats (n = 18/group) using 16S rDNA high throughput sequencing. Results revealed that distinctive diet based phenotypical changes were observed in some of the Cafeteria diet fed rats. Interestingly, some weight gain resistant (WGR) animals in Cafeteria diet fed groups show similar trend like that of control normal chow fed rats. Fecal microbiome analysis indicates that the ratio of Bacteriodetes is higher than the Firmicutes in cecum samples of Cafeteria diet fed rats whereas no significant difference is found in fecal samples of Cafeteria diet fed rats and as well as in control rats. Further analysis of other taxa at the level of family and genus of microbial abundance are also discussed. Our study suggests that contribution of gut microbiota towards obesity is not at the phylum level, and microbiome composition even at the level of species or strain may exert impact on the metabolism of the Cafeteria diet.