SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

Article citations

More>>

Walen, K.H. (2011) Normal Human Cell Conversion to 3-D Cancer-Like Growth: Genome Damage, Endopolyploidy, Senescence Escape, and Cell Polarity Change/ Loss. Journal of Cancer Therapy, 2, 181-189.
https://doi.org/10.4236/jct.2011.22023

has been cited by the following article:

  • TITLE: Genomic Instability in Cancer I: DNA-Repair Triggering Primitive Hereditary 4n-Skewed, Amitotic Division-System, the Culprit in EMT/MET/Metaplasia Cancer-Concepts

    AUTHORS: Kirsten H. Walen

    KEYWORDS: Cancer Evolution, DNA-Damage-Repair, Mitotic Slippage, Hereditary Primitive Tetraploidy, 90° Amitotic Skewed Division, Fitness-Gain, Embryogenesis-Type EMT/MET, Human Cell Conservation

    JOURNAL NAME: Journal of Cancer Therapy, Vol.9 No.12, December 13, 2018

    ABSTRACT: The objective was to gain proof of genome damage-repair induced mitotic slippage process (MSP) to 4n-diplochromosome skewed division-system, earlier suggested to have “cancer-deciding” consequences. Our damage-model showed two succeeding phases: molecular mutations for initiation of fitness-gained cells, and large chromosomal changes to aneuploidy from inherited DNA-breakage-repair inaccuracies. The mutations were gained while DNA-repair and DNA-replication, co-existed in the route to tetraploidy, a phenomenon also expressed for some existing unicellular organisms. These organisms also showed genome reductive, amitotic, meioticlike division, and was the origin of human genome conserved, self-inflicted 90° reorientation of the 4n nucleus relative to the cytoskeleton axis. In the in vitro DNA-damage model, this remarkable 4n-event deciding “flat-upright” cell-growth characteristics showed several consequences, for example, cancer-important, E-cadherin-β-catenin cell-to-cell adherence destruction, which gave diploid progeny cells, mobility freedom from cell contact inhibition, likely in renewal tissues. This 4n-skewed division-system with inheritance in progeny cells for repeat occurrences as mentioned for flat-up-right growth patterns is similar to claimed concepts of metaplasia-EMT/MET embryogenesis events in cancer evolution. A scrutiny of this literature, proof-wise invalidated this embryological concept by tetraploid 8C cells occurring in MET events and, was noted for small cell occurrence, i.e., diploidy from 4n-8C reductive division, an also event for tumor relapse cells, derived from genome damaging therapy agents. Pre-cancer hyperplasia reported MSP, cadherincatenin destruction and 90° perpendicularity to basal cell membrane. The DNA-damage-repair model can weed-out therapy-agents triggering 4n-skewed division. Cancer-control, beginning-information, is likely from mutational identity of the 4n derived fitness-gained cells.