SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

Article citations


Ho, V.B. (2018) International Journal of Physics, 6, 139-146.

has been cited by the following article:

  • TITLE: Fluid State of Dirac Quantum Particles

    AUTHORS: Vu B. Ho

    KEYWORDS: Dirac Equation, Wave Mechanics, Stan, Fluid Mechanics, Stream Function, Velocity Potential, Potential Flow, General Relativity, Maxwell Field Equations, CW Complexes, Differential Geometry, Topology, Differentiable Manifolds, Topological Transformation

    JOURNAL NAME: Journal of Modern Physics, Vol.9 No.14, December 13, 2018

    ABSTRACT: In our previous works, we suggest that quantum particles are composite physical objects endowed with the geometric and topological structures of their corresponding differentiable manifolds that would allow them to imitate and adapt to physical environments. In this work, we show that Dirac equation in fact describes quantum particles as composite structures that are in a fluid state in which the components of the wavefunction can be identified with the stream function and the velocity potential of a potential flow formulated in the theory of classical fluids. We also show that Dirac quantum particles can manifest as standing waves which are the result of the superposition of two fluid flows moving in opposite directions. However, for a steady motion a Dirac quantum particle does not exhibit a wave motion even though it has the potential to establish a wave within its physical structure, therefore, without an external disturbance a Dirac quantum particle may be considered as a classical particle defined in classical physics. And furthermore, from the fact that there are two identical fluid flows in opposite directions within their physical structures, the fluid state model of Dirac quantum particles can be used to explain why fermions are spin-half particles.