SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Martel, A.E. (2006) Critical stability constants of metal complexes. 26.

has been cited by the following article:

  • TITLE: Metal ion-binding properties of L-glutamic acid and L-aspartic acid, a comparative investigation

    AUTHORS: S. A. A. Sajadi

    KEYWORDS: Glutamic Acid; Aspartic Acid; Tartaric Acid; Divalent Metal Ions; Potentiometric Titration; Acidity and Stability Constants

    JOURNAL NAME: Natural Science, Vol.2 No.2, March 2, 2010

    ABSTRACT: A comparative research has been developed for acidity and stability constants of M(Glu)1, M(Asp)2 and M(Ttr)3 complexes, which have been determined by potentiometric pH titration. Depending on metal ion-binding properties, vital differences in building complex were observed. The present study indicates that in M(Ttr) com-plexes, metal ions are arranged to the carboxyl groups, but in M(Glu) and M(Asp), some metal ions are able to build chelate over amine groups. The results mentioned-above demonstrate that for some M(Glu) and M(Asp) complexes, the stability constants are also largely determined by the affinity of metal ions for amine group. This leads to a kind of selectivity of metal ions, and transfers them through building complexes accompanied with glutamate and aspartate. For heavy metal ions, this building complex helps the absorption and filtration of the blood plasma, and consequently, the excursion of heavy metal ions takes place. This is an important method in micro-dialysis. In this study the different as-pects of stabilization of metal ion complexes regarding to Irving-Williams sequence have been investigated.