SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

Article citations

More>>

Anderson, M.L., Chen, Z.Q., Kavvas, M.L. and Feldman, A. (2002) Coupling HEC-HMS with Atmospheric Models for Prediction of Watershed Runoff. Journal of Hydrologic Engineering, 7, 312-318.
https://doi.org/10.1061/(ASCE)1084-0699(2002)7:4(312)

has been cited by the following article:

  • TITLE: Impact of Mechanical and Biological Watershed Treatments on Surface Runoff

    AUTHORS: Mehrdad Safaei, Akram Mahan

    KEYWORDS: Flood, Hydrologic Modeling, Watershed Treatment

    JOURNAL NAME: Open Journal of Geology, Vol.8 No.9, August 27, 2018

    ABSTRACT: Floods are common types of water-related natural hazards that cause not only destruction and loss of lives but also erosion and sedimentation. Soil and water conservation (SWC) techniques such as mechanical treatments (placing check dams) and biological treatments (vegetation restoration) are being applied to reduce the velocity of runoff and mitigate the impact of floods. In this research, we evaluated four different SWC scenarios to see how the watershed responds to those watershed treatments. We calibrated and validated a rainfall-runoff model to simulate the impact of biological and mechanical treatments on peak discharge and volume of the runoff in Bishebone watershed in the north of Iran. Simulation of peak discharge for before and after watershed treatments for floods with return periods of 2 to 100 years shows that, the combination impact of mechanical and biological treatments on floods with return period of 100 years is 6.95 to 9.94 percent. Results also show that the impact of mechanical treatments on floods with higher return periods is relatively more than that of shorter return periods.