Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Balashov, E.M., Golubkov, G.V. and Ivanov, G.K. (1984) Radiative Transitions between Rydberg States of Molecules. Journal of Experimental and Theoretical Physics, 59, 1188-1194.

has been cited by the following article:

  • TITLE: Quantum Nature of Distortion and Delay of Satellite Signals II

    AUTHORS: Gennady V. Golubkov, Michael I. Manzhelii, Lev V. Eppelbaum

    KEYWORDS: D and E Atmospheric Layers, l Mixing, Rydberg Complex, Satellite Radio Signal, Electromagnetic Field, Resonant Photon Scattering, Distortion and Delay of Satellite Signal

    JOURNAL NAME: Positioning, Vol.9 No.3, August 17, 2018

    ABSTRACT: A detailed analysis of the influence of Rydberg states to the behavior of GPS satellite signals in the D and E atmospheric layers has been carried out. It is demonstrated that these states are the main reason for the GPS signal distortion. It is shown that the behavior of satellite signals is associated with the spectral characteristics of the UHF radiation of the Rydberg states depending on the geomagnetic conditions of ionosphere. The foundations of the quantum theory of distortion and delay of GPS satellite signal propagation through D and E atmospheric layers are analyzed and expounded. The problem reduces to the resonant scattering of photons, moving in the electromagnetic field of the signal, to the Rydberg complexes populated in a two-temperature non-equilibrium plasma. The processes of creation of additional photons because of stimulated emission and resonance scattering of photons are considered. In the present work, the quantum theory of the propagation of a satellite signal in the Earth’s upper atmosphere, firstly earlier proposed by the same authors, is described in detail. The general problems of the theory and possible theoretical and applied consequences are discussed. It is explained that two main processes occurring here, are directly related to the resonant quantum properties of the propagation medium. The first process leads to a direct increase in the power of the received signal, and second—to a shift in the signal carrier frequencyand the time delayof its propagation. The main reasons of the processes are scattering of the Rydberg electron by the ion core and presence of the neutral medium molecule in the intermediate autoionization states of the composite system populated by the strong non-adiabatic coupling of electron and nuclear motions. The main purposes of our investigation are the physical justification of the formation of parameters andusing the quantum dynamics of the electron behavior in the intermediate state of the Rydberg complex A**M and the estimation of the quantities ofandin the elementary act of elastic (Rayleigh) photon scattering.