SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Henze, M., van Loosdrecht, M.C.M., Ekama, G. and Brdjanovic, D. (2008) Biological Wastewater Treatment Principles, Modelling and Design. IWA Publishing, Glasgow.

has been cited by the following article:

  • TITLE: Design and Comparison of Wastewater Treatment Plant Types (Activated Sludge and Membrane Bioreactor), Using GPS-X Simulation Program: Case Study of Tikrit WWTP (Middle Iraq)

    AUTHORS: Alaa Uldeen Athil Arif, Mohamed Tarek Sorour, Samia Ahmed Aly

    KEYWORDS: Activated Sludge, Membrane Bioreactor, Wastewater Treatment, Wastewater treatment Plant Design, Modeling and Simulation

    JOURNAL NAME: Journal of Environmental Protection, Vol.9 No.6, May 31, 2018

    ABSTRACT: Mathematical models and simulation are considered a powerful tool in engineering practice. Those tools are becoming increasingly used for the improvement of wastewater treatment plants design because the conceptual design is complex and ill-defined. In this paper, three alternatives: 1) complete mix activated sludge without nitrogen removal (CAS); 2) complete mix activated sludge with nitrogen removal (CAS-N) and; 3) membrane bioreactor (MBR) processes were designed into two steps: first concept design to calculate the size of process units, then second implement modeling and simulation to improve the accuracy of the conceptual design. In brief, the treatment process design has been verified by using the activated sludge model No. 1 (ASM1) in GPS-X (v.7) simulation software. This application helps not only in sizing the treatment units but also in understanding the plant’s capacity. In the same time, it can assist in studying the future expansion works required for increased hydraulic and organic loadings. For this purpose, Tikrit WWTP was selected as a case study. The used model was validated by comparing the designed values of the plant and the modeling data. The verification of the obtained results from both hand calculations and the results of the program showed a good agreement. A significant difference in the volume of secondary treatment was obtained from design calculations, where the CAS without denitrification system was 9244 m3 (aerobic and secondary tanks), CAS with denitrification system was 11,324 m3 (anoxic, aerobic and secondary tanks) and for MBR system was 7468 m3 (anoxic, aerobic and immersed membrane tanks). From the obtained results point of view, it can be concluded that mathematical models can be considered as worthy tools to complement the established wastewater treatment plant design procedures.