SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Pa?ssé, S., Valle, C., Serfant, F., Courtney, M., Burcelin, R., Amar, L., et al. (2016) Comprehensive Description of Blood Microbiome from Healthy Donors Assessed by 16S Targeted Metagenomic Sequencing, Transfusion 56, 1138-1147.

has been cited by the following article:

  • TITLE: Cultural Isolation and Characteristics of the Blood Microbiome of Healthy Individuals

    AUTHORS: Stefan Panaiotov, Georgi Filevski, Michele Equestre, Elena Nikolova, Reni Kalfin

    KEYWORDS: Blood Microbiota, Targeted Next Generation Sequencing, Operational Taxonomic Unit

    JOURNAL NAME: Advances in Microbiology, Vol.8 No.5, May 31, 2018

    ABSTRACT: Background: On the analogy of the non-pathogenic microbiota found in oral cavity, skin and gastrointestinal tract, existence of blood microbiota was confirmed by DNA sequencing, but never deeply characterized. Hypothesis for the existence of dormant blood microbiota in healthy humans have been arisen and single species have been isolated. The aim of our study was to resuscitate and investigate the biodiversity of bacterial and fungal dormant blood microbiota in healthy individuals by blood culturing and NGS DNA sequencing. Results: Twenty eight blood samples of healthy individuals, seven for each blood type, were studied. Several culture media were tested. Blood microbiota resuscitation was performed in BHI broth supplemented with vitamin K 1 mg/ml, 2% sucrose, 0.25% sodium citrate and 0.2% yeastolate at 43?C for 72 h. All tested blood samples were culture positive, as confirmed by Gram staining and TEM. TEM images demonstrated well defined cell structures. Analysis for bacterial and eukaryotic species was performed by 16S rRNA and ITS2 targeted sequencing. The obtained sequences were clustered (≥97% identity) in Operational Taxonomic Units (OTUs). Among cultured and uncultured samples we identified OTUs similarity with 47 bacterial orders belonging to 15 phyla and 39 fungi orders blonging to 2 phyla. For the first time we demonstrated isolation and sequencing identification of fungal blood microbiota in healthy individuals. Blood-group differences were identified among the bacterial microbiome compositions. Conclusion: The dormant blood microbiome is innate of the healthy individuals. Interventional strategies to bind the host blood microbiome with the states of health and disease remain an unmet research goal.