Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Mohanty, H.K. (1972) Hydromagnetic Flow between Two Rotating Disks with Noncoincident Parallel Axes of Rotation. Physics of Fluids, 15, 1456-1458. https://doi.org/10.1063/1.1694107
has been cited by the following article:
TITLE: Flow of a Second-Grade Fluid between Eccentric Rotating Porous Disks in the Presence of a Magnetic Field
AUTHORS: H. Volkan Ersoy
KEYWORDS: Second-Grade Fluid, Eccentric Rotating Porous Disks, Magnetohydrodynamics, Perturbation Solution
JOURNAL NAME: Open Journal of Applied Sciences, Vol.8 No.5, May 30, 2018
ABSTRACT: This paper is concerned with the steady flow of a second-grade fluid between two porous disks rotating eccentrically under the effect of a magnetic field. A perturbation solution for the velocity field is presented under the assumption that the second-grade fluid parameter β is small. It is also studied the effect of all the parameters on the horizontal force per unit area exerted by the fluid on the disks. It is found that the x- and y-components of the force increase and decrease, respectively, when the second-grade fluid parameter β and the Hartmann number M increase. It is seen that the forces in the x- and y-directions on the top disk increase with the increase of the suction/injection velocity parameter P but those on the bottom disk decrease. It is shown that the force acting on the top disk is greater than that acting on the bottom disk in view of the axial velocity in the positive z-direction. It is observed that the increase in the Reynolds number R leads to a rise in the horizontal force.
Related Articles:
Hydrodynamic Flow between Two Non-Coincident Rotating Disks Embedded in Porous Media
Rabindranath Jana, Mrinal Maji, Sanatan Das, Sovan Lal Maji, Swapan Kumar Ghosh
DOI: 10.4236/wjm.2011.12007 3,999 Downloads 9,238 Views Citations
Pub. Date: April 20, 2011
Numerical Solution for a Similar Flow between Two Disks in the Presence of a Magnetic Field
Sajjad Hussain, Muhammad Anwar Kamal, Farooq Ahmad, Muhammad Ali, Muhammad Shafique, Sifat Hussain
DOI: 10.4236/am.2013.48155 3,208 Downloads 4,781 Views Citations
Pub. Date: July 30, 2013
Slipping Phenomenon in Polymeric Fluids Flow between Parallel Planes
Yuri A. Altukhov, Grigory V. Pyshnograi, Ivan G. Pyshnograi
DOI: 10.4236/wjm.2011.16037 3,095 Downloads 5,981 Views Citations
Pub. Date: December 9, 2011
Flow of a Second-Grade Fluid between Eccentric Rotating Porous Disks in the Presence of a Magnetic Field
H. Volkan Ersoy
DOI: 10.4236/ojapps.2018.85013 181 Downloads 323 Views Citations
Pub. Date: May 30, 2018
Influence of Rotating Speed Ratio on the Annular Turbulent Flow between Two Rotating Cylinders
M. Raddaoui
DOI: 10.4236/jmp.2013.47135 2,820 Downloads 4,057 Views Citations
Pub. Date: July 15, 2013