SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Rührnschopf, E. and Klingenbeck, K. (2011) A General Framework and Review of Scatter Correction Methods in X-ray Cone-Beam Computerized Tomography. Part 1: Scatter Compensation Approaches. Medical Physics, 38, 4296-4311.
https://doi.org/10.1118/1.3599033

has been cited by the following article:

  • TITLE: Analytical Calculation of the Compton Single Scatter Component of Pencil Beam Scatter Kernel for Scatter Correction in kV Cone Beam CT (kV-CBCT)

    AUTHORS: Jie Liu, J. Daniel Bourland

    KEYWORDS: Scatter Correction, Cone Beam CT, Beam Scatter Kernel, Compton Scatter, Single Scatter

    JOURNAL NAME: International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, Vol.7 No.2, May 28, 2018

    ABSTRACT: The accuracy of conventional superposition or convolution methods for scatter correction in kV-CBCT is usually compromised by the spatial variation of pencil-beam scatter kernel (PBSK) due to finite size, irregular external contour and heterogeneity of the imaged object. This study aims to propose an analytical method to quantify the Compton single scatter (CSS) component of the PBSK, which dominates the spatial distribution of total scatter assuming that multiple scatter can be estimated as a constant background and Rayleigh scatter is the secondary source of scatter. The CSS component of PBSK is the line integration of scatter production by incident primary photons along the beam line followed by the post-scattering attenuation as the scattered photons traverse the object. We propose to separate the object-specific attenuation term from the line integration and equivalently replace it with an average value such that the line integration of scatter production is object independent but only beam specific. We derived a quartic function formula as an approximate solution to the spatial distribution of the unattenuated CSS component of PBSK. The “effective scattering center” is introduced to calculate the average attenuation. The proposed analytical framework to calculate the CSS was evaluated using parameter settings of the On-Board Imager kV-CBCT system and was found to be in high agreement with the reference results. The proposed method shows highly increased computational efficiency compared to conventional analytical calculation methods based on point scattering model. It is also potentially useful for correcting the spatial variant PBSK in adaptive superposition method.