Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

u-blox (2011) Wireless Modules, Data and Voice Modules. AT Commands Manual, WLS-SW-11000-2.

has been cited by the following article:

  • TITLE: Chip Design for In-Vehicle System Transmitter

    AUTHORS: Majeed Nader, John Liu

    KEYWORDS: EU Emergency-Call (eCall), FPGA, In-Vehicle System, Transmitter, System-on-Chip

    JOURNAL NAME: Journal of Computer and Communications, Vol.6 No.5, May 25, 2018

    ABSTRACT: This paper presents embedded system design of the In-Vehicle System (IVS) for the European Union (EU) emergency call (eCall) system. The IVS transmitter modules are designed, developed and implemented on a field programmable gate array (FPGA) device. The modules are simulated, synthesized, and optimized to be loaded on a reconfigurable device as a system-on-chip (SoC) for the IVS electronic device. All the modules of the transmitter are designed as a single embedded module. The bench-top test is completed for testing and verification of the developed modules. The hardware architecture and interfaces are discussed. The IVS signal processing time is analyzed for multiple frequencies. A range of appropriate frequency and two hardware interfaces are proposed. A state-of-the-art FPGA design is employed as a first implementation approach for the IVS prototyping platform. This work is used as an initial step to implement all the modules of the IVS on a single SoC chip.