Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations


Tarabrin, G. (2014) Non-Chrestomathy Problems of Mathematical Physics. Palmarium Academic Publishing, Saarbrucken. (In Russian)

has been cited by the following article:

  • TITLE: The Study on the Cycloids of Moving Loops

    AUTHORS: Gennady Tarabrin

    KEYWORDS: Curves, Loops, Cycloids

    JOURNAL NAME: Journal of Applied Mathematics and Physics, Vol.6 No.4, April 24, 2018

    ABSTRACT: The infinite set of cycloids is created. Each cycloid of this set is defined as a movement trajectory of a point when this point circulates on the convex closed contour of arbitrary form when this contour moves rectilinearly without rotation on the plane with a velocity equal to the tangential velocity of a point on circulation contour. The classical cycloid is elements of this set. The differential equation of a cycloid set is derived and its solution in quadratures is received. The inverse problem when for the given cycloid it is necessary to fine the form of a circulation contour is solved. The problem of differential equation of the second order with boundary conditions about a bend of big curvature of an elastic rod of infinite length is solved in quadratures. Geometry of the loop which is formed at such bend is investigated. It is discovered that at movement of an elastic loop on a rod when the form and the size of a loop don’t change, each point of a loop moves on a trajectory which named by us the cycloid and which represents a circumference arch.