SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Fankem, H., Nwaga, D., Deubel, A., Dieng, L., Merbach, W. and Etoa, F.X. (2006) Occurrence and Functioning of Phosphate Solubilizing Microorganisms from Oil Palm Tree (Elaeis guineensis) Rhizosphere in Cameroon. African Journal of Biotechnology, 5, 2450-2460.

has been cited by the following article:

  • TITLE: Phosphate Solubilization by Bacillus subtilis and Serratia marcescens Isolated from Tomato Plant Rhizosphere

    AUTHORS: Eman A. H. Mohamed, Azza G. Farag, Sahar A. Youssef

    KEYWORDS: Phosphate Solubilization, Pikovskaya Medium, Bacillus subtilis, Serratia marcescens

    JOURNAL NAME: Journal of Environmental Protection, Vol.9 No.3, March 28, 2018

    ABSTRACT: Plants need phosphorus for many physiological activities in a form of phosphate anions. Three different bacterial strains (Bacillus subtilis PH, Serratia marcescens PH1, and Serratia marcescens PH2), recently isolated from tomato plant rhizosphere, have high phosphate solubilization index (SI from 2.8 to 3.2) on Pikovskaya agar medium (which contains calcium phosphate). Moreover, phosphate release from calcium in Pikovskaya broth over 5 days is increasing with cell growth for the different isolates. The most efficient phosphate solubilization case is the mixed culture of the 3 strains (OD475 is almost 1). On the other hand, pH values decreased dramatically with time due to organic acids secretion and the maximum acidification level is recoded for Serratia marcescens PH2 (pH = 1.94). Interestingly, the isolates are resistance to important pesticides (oxamyl, thiophanate methyl, and captan) that are commonly used in the sampling area. This resistance is very favorable and increases the persistence of the phosphate solubilizing bacteria in contaminated soils. The isolates are therefore plant symbionts and growth promoting agents.