SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

Article citations

More>>

Chen, M. (2011) A Brief Overview of Bulk Metallic Glasses. NPG Asia Materials, 3, 82-90.
https://doi.org/10.1038/asiamat.2011.30

has been cited by the following article:

  • TITLE: Simulation of Solidification Parameters during Zr Based Bulk Metallic Glass Matrix Composite’s (BMGMCs) Additive Manufacturing

    AUTHORS: Muhammad Musaddique Ali Rafique

    KEYWORDS: Simulation, Metallic Glass, Solidification, Toughness

    JOURNAL NAME: Engineering, Vol.10 No.3, March 20, 2018

    ABSTRACT: After a silence of three decades, bulk metallic glasses and their composites have re-emerged as a competent engineering material owing to their excellent mechanical properties not observed in any other engineering material known till date. However, they exhibit poor ductility and little or no toughness which make them brittle and they fail catastrophically under tensile loading. Exact explanation of this behaviour is difficult, and a lot of expensive experimentation is needed before conclusive results could be drawn. In present study, a theoretical approach has been presented aimed at solving this problem. A detailed mathematical model has been developed to describe solidification phenomena in zirconium based bulk metallic glass matrix composites during additive manufacturing. It precisely models and predicts solidification parameters related to microscale solute diffusion (mass transfer) and capillary action in these rapidly solidifying sluggish slurries. Programming and simulation of model is performed in MATLAB®. Results show that the use of temperature dependent thermophysical properties yields a synergic effect for multitude improvement and refinement simulation results. Simulated values proved out to be in good agreement with prior simulated and experimental results.