SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

Article citations

More>>

Liu, K.S., Shin, T.C. and Tsai, Y.B. (1999) A Free Field Strong Motion Network in Taiwan: TSMIP. Terrestrial, Atmospheric and Oceanic Sciences, 10, 377-396.
https://doi.org/10.3319/TAO.1999.10.2.377(T)

has been cited by the following article:

  • TITLE: Vibration Analysis of a 51-Story Tower from the Recorded Data of the Earthquake, Typhoon and Ambient Vibration

    AUTHORS: Kun-Sung Liu

    KEYWORDS: Earthquake, Typhoon, Peak Floor Acceleration, Peak Floor Velocity, Vibration Analysis

    JOURNAL NAME: World Journal of Engineering and Technology, Vol.6 No.1, February 27, 2018

    ABSTRACT: This study uses the in-structure recordings to investigate the vibration characteristics of a 51-story steel high-rise building in response to a major earthquake, typhoon and ambient vibrations. This presents an opportunity for us to compare the building behaviors, especially their modal properties under different types of excitation. First, we use a two-stage regression procedure to obtain the relations of the building response, including peak floor acceleration and velocity as a function of the wind speed and floor height of the building. Secondly, the structural dynamic characteristics of the high rise building, including the transfer functions and natural frequencies, excited by the Chi-Chi earthquake, Typhoon Aere, and ambient vibrations are also determined and compared. As a result, from the formulas for building response, the predicted peak floor acceleration is higher in the lateral (EW) component than in the longitudinal (NS) component. This is probably due to the greater stiffness of the building in the longitudinal direction than in the lateral direction. In addition, after having identified the 1st, 2nd, and 3rd natural frequencies using the recorded data from the earthquake, typhoon and ambient vibrations, the ranking of the fundamental natural frequencies from low to high is the Chi-Chi earthquake, Typhoon Aere and the ambient vibrations. This means that greater excitation forces of the earthquake have resulted in lower natural frequencies than that produced by the typhoon and ambient vibrations.