SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Burrough, P.A. and MacDonnell (1998) Principles of Geographical Information Systems. Clarendon Press Oxford, Oxford, 333 p.

has been cited by the following article:

  • TITLE: Spatial Distribution of Fuel Models Based on the Conditional-Fuel-Loading Concept

    AUTHORS: José Germán Flores Garnica

    KEYWORDS: Validation, Fuel Mapping, Geostatistics, Ordinary Kriging

    JOURNAL NAME: Journal of Environmental Protection, Vol.9 No.2, February 25, 2018

    ABSTRACT: Fuel model mapping has followed in general two trends: 1) indirect inferences, where some factors, presumably associated with fuel production, are related to a given fuel model; and 2) experts consulting, which has been used to classify and to validate other people classifications. However, reliance on expert judgment implies a subjective approach. Thus, I propone the integration of geostatistic techniques and the Conditional-Fuels-Loading concept (CFL) to define a more objective perspective in the fuel-model mapping. The information used in this study was collected in a forest of Chihuahua, Mexico, where fuels were inventoried in 554 (1000 m2) sample plots. These sample plots were classified using the CFL; and ordinary kriging (Gaussian, spherical and exponential) was used to interpolate the fuel-model values. Using the Akaike’s Information Criterion the spherical model performed best. The methodology allowed a finer definition of spatial distribution of fuel models. Some advantages of the CFL are: 1) it is based on actual fuel loads, and not only on vegetation structure and composition; 2) it is objective and avoids the bias of different classifiers (experts); and 3) it avoids the need of the advice of experts.