Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations


Chen, T., Pan, M., Wang, Y., Liu, J., Chen, L. and Sun, L. (2012) Manipulation of Microobjects Based on Dynamic Adhesion Control. International Journal of Advanced Robotic Systems, 3.

has been cited by the following article:

  • TITLE: High-Speed Active Release End-Effector Motions for Precise Positioning of Adhered Micro-Objects

    AUTHORS: Eunhye Kim, Masaru Kojima, Kazuto Kamiyama, Mitsuhiro Horade, Yasushi Mae, Tatsuo Arai

    KEYWORDS: Adhesion Force, Vibration Generation, Releasing Strategy, Micro-Manipulation

    JOURNAL NAME: World Journal of Engineering and Technology, Vol.6 No.1, February 1, 2018

    ABSTRACT: This paper presents a release method for micro-objects. To improve position accuracy after release, we propose 3D high-speed end-effector motions. The classical release task focuses on the detachment of a micro-object from an end-effector. The technique utilizes merely the vibration of the end-effector regardless of the pattern of movement. To release different sizes of micro- objects and place them precisely at the desired locations in both air and liquid media, in this paper, we propose high-speed motions by analyzing the adhesion force and movement of micro-objects after separation. To generate high end-effector acceleration, many researchers have applied simple vibration by using an additional actuator. However, in our research, 3D high-speed motion with apt amplitude is accomplished by using only a compact parallel mechanism. To verify the advantages of the proposed motion, we compare five motions, 1D motions (in X-, Y-, and Z-directions) and circular motions (clockwise and counterclockwise directions), by changing the frequency and amplitude of the end-effector. Experiments are conducted with different sizes of microbeads and NIH3T3 cells. From these experiments, we conclude that a counterclockwise circular motion can release the objects precisely in air, while 1D motion in the Y direction and two circular motions can detach the objects at the desired positions after release in a liquid environment.