SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

Article citations


Kleeberg, A. and Grüneberg, B. (2005) Phosphorus Mobility in Sediments of Acid Mining Lakes, Lusatia, Germany. Ecological Engineering, 24, 89-100.

has been cited by the following article:

  • TITLE: Do Water Matrix and Particulate Buffering Capacity Affect the Rate and Extent of P Release?

    AUTHORS: Jinbo Zhao, Yingjun Xu, Li Xu, Qian Li

    KEYWORDS: Nonpoint Source Pollution, Phosphorus, Resuspension, Particulate Matter, Laboratory Beacker Experiment, River

    JOURNAL NAME: Journal of Water Resource and Protection, Vol.10 No.1, January 27, 2018

    ABSTRACT: The aim of this study was to investigate the release of inorganic and organic phosphorus species from particles in rivers and estuaries during resuspension events such as storm, wind and tidal induced turbulence. To achieve this aim, laboratory beaker experiments were designed with autoanalyzer 3 (AA3). The study first investigates phosphorus equilibration in ultra-pure water (UHP) water, biotic river water and abiotic river water under short term and long term conditions. Then, three typical organic and inorganic phosphorus compounds were selected (orthophosphate, phytic acid (PTA) and β-D-glucose-6-phosphate monosodium salt (G-6-P)) to simulate the effect of addition input to river and estuaries in the time period of 150 h. The results show that in a turbulent river, dissolved inorganic phosphorus (DIP) and dissolved organic phosphorus (DOP) will reach equilibrium between the particulate matter and the water column within 24 h. Additional input of DIP or DOP to the river, has different effects to the river nutrients balance. The buffering capacity of the suspended particulate matter (SPM) plays an important role and behavior difference to the inorganic and various organic phosphorus compounds.