SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

Article citations


Lee, A.S., Ellman, M.B., Yan, D., Kroin, J.S., Cole, B.J., van Wijnen, A.J. and Im, H.J. (2013) Current Review of Molecular Mechanisms Regarding Osteoarthritis and Pain. Gene, 527, 440-447.

has been cited by the following article:

  • TITLE: Chondrocyte Production of Pro-Inflammatory Chemokine MCP-1 (CCL-2) and Prostaglandin E-2 Is Inhibited by Avocado/Soybean Unsaponifiables, Glucosamine, Chondroitin Sulfate Combination

    AUTHORS: Erica J. Secor, Mark W. Grzanna, Ann M. Rashmir-Raven, Carmelita G. Frondoza

    KEYWORDS: Inflammation, Chondrocytes, Avocado/Soybean Unsaponifiables, Glucosamine, Chondroitin Sulfate

    JOURNAL NAME: Pharmacology & Pharmacy, Vol.9 No.1, January 12, 2018

    ABSTRACT: Osteoarthritis (OA) is a chronic, painful disease affecting articulating joints in man and animals. It is characterized by cartilage breakdown, bone remodeling, osteophyte formation and joint inflammation. Currently used non-steroidal anti-inflammatory drugs for the management of OA are known to have deleterious side effects. To address the need for alternatives, we evaluated the anti-inflammatory effects of a combination of avocado/soybean unsaponifiables (ASU), glucosamine (GLU) and chondroitin sulfate (CS) by measuring chemokine MCP-1 (monocyte chemoattractant protein 1, CCL2) and prostaglandin E-2 (PGE2) in stimulated chondrocytes. As the only cellular constituents of cartilage, chondrocytes are the source of pro-inflammatory mediators that play critical roles in the pathogenesis of OA. Chondrocytes were incubated: with: 1) control media, 2) [ASU + GLU + CS] combination, or 3) Phenylbutazone (PBZ) for 24 hours. Cells were next stimulated with IL-1β or LPS for another 24 hrs. MCP-1 and PGE2 from supernatants were quantitated by immunoassay. Another set of chondrocytes seeded in chamber slides were stimulated with IL-1β for 1 hour and then immunostained for NF-κB. Chondrocytes stimulated with IL-1β or LPS significantly increased MCP-1 and PGE2 production which were significantly reduced after treatment with [ASU + GLU + CS]. In contrast, PBZ significantly reduced PGE2 but not MCP-1 production. IL-1β stimulation induced nuclear translocation of NF-κB, which was inhibited by pre-treatment with either [ASU + GLU + CS] or PBZ. The present study provides evidence that the production of MCP-1 by chondrocytes can be inhibited by the combination of [ASU + GLU + CS] but not by PBZ. In contrast, PGE2 production was inhibited by either treatment suggesting that the production of MCP-1 and PGE2 could be independently regulated. The finding of distinct effects of [ASU + GLU + CS] on MCP-1 and PGE2 synthesis supports a scientific rationale for a multimodal treatment approach in the management of OA.